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Abstract

Understanding the principles of protein folding is a cornerstone of computational biology, with
implications for drug design, bioengineering, and the understanding of fundamental biological
processes. Lattice protein folding models offer a simplified yet powerful framework for study-
ing the complexities of protein folding, enabling the exploration of energetically optimal folds
under constrained conditions. However, finding these optimal folds is a computationally chal-
lenging combinatorial optimization problem. In this work, we introduce a novel upper-bound
training scheme that employs masking to identify the lowest-energy folds in two-dimensional
Hydrophobic-Polar (HP) lattice protein folding. By leveraging Dilated Recurrent Neural Net-
works (RNNs) integrated with an annealing process driven by temperature-like fluctuations, our
method accurately predicts optimal folds for benchmark systems of up to 60 beads. Our ap-
proach also effectively masks invalid folds from being sampled without compromising the autore-
gressive sampling properties of RNNs. This scheme is generalizable to three spatial dimensions
and can be extended to lattice protein models with larger alphabets. Our findings emphasize the
potential of advanced machine learning technigues in tackling complex protein folding problems
and a broader class of constrained combinatorial optimization challenges.

HP Protein Model

1. HP proteins have the following properties:

= each bead is either Hydrophobic H or Polar P
= fold Is In discrete space
= fold obeys self-avoiding walk constraint

Vi # i (@, yi) # (2, 95) (1)
= quality or energy of a fold is the number of H-H contacts (see dashed line in figure)

2. Despite the simplified model, folding is still NP-Hard with naive algorithm complexity of O(3N).

3. For an HP chain of size N + 1, a fold can be encoded as a vector € |0, 1, 2,3]N. In the figure
below, the fold can be encoded as {0,2,0,2,1}; this is interpreted as folding the second bead
LEFT, third bead UP, fourth bead LEFT, fifth bead UP, and sixth bead RIGHT.
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Figure 1.

Generating Folds - Masking Invalid Folds

In our distribution of folds Py, invalid folds that do not respect the self-avoiding walk (SAW)
constraint exist and are prone to be sampled. We prevent sampling such folds by ‘masking’
actions that lead to breaking the SAW constraint.

Generating Folds

We use a variant of Recurrent Neural Network (RNN) architecture with residual connections called
the Dilated RNN to generate folds. The fold is generated sequentially and autoregressively from
distribution Py by sampling an action € {0, 1,2, 3} for each bead, starting from the second bead
to the last.

The generation process is as follows:

= for the it bead, sample the i™ action € {0, 1,2, 3}

= the encoding of the i*! action is concatenated with the encoding of the i + 1" bead and
used as input to sample the action of the i + 1" bead - Autoregressive nature

= ;.= ¢+ 1 and repeat - Sequential nature

Figure 2. The dilated RNN architecture with long-range residual connections that help better capture folding
dynamics. Input «; is the concatenation of the it" bead and the ¢ — 1™ action. The i*® output is the action for the ¢
bead sampled after the softmax layer ‘S..

Upper-bound Loss

One can train this RNN parameters 8 by minimizing the Kullback-Leibler (KL) divergence between
the true Boltzmann distribution and the RNN parameter-induced distribution Py. The KL diver-
gence can be minimized by using the

Variational free energy loss:

Fo(T) = (E) — TSy = L(T Z Pi-(d) log(Py(d)) (E(d) + Tlog(P(,i(d))) 2)

However, we find that the free energy loss £( ) is not stable during training; we hypothesize that
this is due to the perpetual action masking. Therefore, we derive an upper-bound loss L£(T') that
empirically demonstrates better performance.

Derived Upper-bound of Variational free energy loss:

ZPH ) log( P (d)) (E(d) 4 Tlog(Pgi(d))) (3)

We prove: i
L(T) > L(T).
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Training Results
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Figure 3. (a) Training with and without annealing. (b) Training with £(T'), £(T'), and loss with no masking £*(T).

Annealed Training

We train 0 by starting from a high temperature Ty and slowly cooling or ‘annealing’ the tempera-
ture to T' = 0. At every stage of the slow annealing, @ is updated with respect to the loss L(T).
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Figure 4.

Folding Results

HP E(d*) Folding- AlphaGo- DRL DQN-LSTM  Variational
Sequence /ero /ero Annealing
20merA -9 -9 -8 -6 -9 -9
20merB -10 - -9 -8 -10 -10

24mer -9 -8 -8 -6 -9 -9

25mer -8 -/ -/ - -8 -8

36mer -14 -13 -13 - -14 -14

48mer -23 -18 - - -23 -23

50mer -21 -18 - - -21 -21

60mer -36 - - - - -36
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