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Abstract

Understanding the principles of protein folding is a cornerstone of computational biology, with

implications for drug design, bioengineering, and the understanding of fundamental biological

processes. Lattice protein folding models offer a simplified yet powerful framework for study-

ing the complexities of protein folding, enabling the exploration of energetically optimal folds

under constrained conditions. However, finding these optimal folds is a computationally chal-

lenging combinatorial optimization problem. In this work, we introduce a novel upper-bound

training scheme that employs masking to identify the lowest-energy folds in two-dimensional

Hydrophobic-Polar (HP) lattice protein folding. By leveraging Dilated Recurrent Neural Net-

works (RNNs) integrated with an annealing process driven by temperature-like fluctuations, our

method accurately predicts optimal folds for benchmark systems of up to 60 beads. Our ap-

proach also effectively masks invalid folds from being sampled without compromising the autore-

gressive sampling properties of RNNs. This scheme is generalizable to three spatial dimensions

and can be extended to lattice protein models with larger alphabets. Our findings emphasize the

potential of advanced machine learning techniques in tackling complex protein folding problems

and a broader class of constrained combinatorial optimization challenges.

HP Protein Model

1. HP proteins have the following properties:

each bead is either Hydrophobic H or Polar P

fold is in discrete space

fold obeys self-avoiding walk constraint

∀i 6= j; (xi, yi) 6= (xj, yj) (1)

quality or energy of a fold is the number of H-H contacts (see dashed line in figure)

2. Despite the simplified model, folding is stillNP-Hardwith naive algorithm complexity ofO(3N ).
3. For an HP chain of size N + 1, a fold can be encoded as a vector ∈ [0, 1, 2, 3]N . In the figure
below, the fold can be encoded as {0, 2, 0, 2, 1}; this is interpreted as folding the second bead
LEFT, third bead UP, fourth bead LEFT, fifth bead UP, and sixth bead RIGHT.

Figure 1.

Generating Folds - Masking Invalid Folds

In our distribution of folds Pθ, invalid folds that do not respect the self-avoiding walk (SAW)

constraint exist and are prone to be sampled. We prevent sampling such folds by ‘masking’

actions that lead to breaking the SAW constraint.

Generating Folds

Weuse a variant of Recurrent Neural Network (RNN) architecturewith residual connections called

the Dilated RNN to generate folds. The fold is generated sequentially and autoregressively from

distribution Pθ by sampling an action ∈ {0, 1, 2, 3} for each bead, starting from the second bead
to the last.

The generation process is as follows:

for the ith bead, sample the ith action ∈ {0, 1, 2, 3}
the encoding of the ith action is concatenated with the encoding of the i + 1th bead and
used as input to sample the action of the i + 1th bead - Autoregressive nature

i := i + 1 and repeat - Sequential nature

Figure 2. The dilated RNN architecture with long-range residual connections that help better capture folding

dynamics. Input xi is the concatenation of the ith bead and the i − 1th action. The ith output is the action for the ith

bead sampled after the softmax layer ‘S’.

Upper-bound Loss

One can train this RNN parameters θ byminimizing the Kullback–Leibler (KL) divergence between
the true Boltzmann distribution and the RNN parameter-induced distribution Pθ. The KL diver-

gence can be minimized by using the

Variational free energy loss:

Fθ(T ) = 〈E〉 − TSθ ⇒ L(T ) =
∑

d

P ⊥
θ (d) log(Pθ(d))

(
E(d) + T log(P ⊥

θ (d))
)

(2)

However, we find that the free energy loss L(T ) is not stable during training; we hypothesize that
this is due to the perpetual action masking. Therefore, we derive an upper-bound loss L̃(T ) that
empirically demonstrates better performance.

Derived Upper-bound of Variational free energy loss:

L̃(T ) =
∑

d

P ⊥
θ (d) log(P u

θ (d))
(

E(d) + T log(P u⊥
θ (d))

)
(3)

We prove:

L̃(T ) ≥ L(T ).

Training Results
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Figure 3. (a) Training with and without annealing. (b) Training with L̃(T ), L(T ), and loss with no masking Lu(T ).

Annealed Training

We train θ by starting from a high temperature T0 and slowly cooling or ‘annealing’ the tempera-
ture to T = 0. At every stage of the slow annealing, θ is updated with respect to the loss L̃(T ).
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Figure 4.

Folding Results

HP
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E(d∗) Folding-

Zero

AlphaGo-

Zero

DRL DQN-LSTM Variational

Annealing

20merA -9 -9 -8 -6 -9 -9

20merB -10 - -9 -8 -10 -10

24mer -9 -8 -8 -6 -9 -9

25mer -8 -7 -7 - -8 -8

36mer -14 -13 -13 - -14 -14

48mer -23 -18 - - -23 -23

50mer -21 -18 - - -21 -21

60mer -36 - - - - -36
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